[@] FLATIRON

INSTITUTE

Nonuniform FFTs at Flatiron
Lessons from developing a small numerical library
Alex Barnett!, with much help from: Jeremy Magland!, Ludvig af Klinteberg

(Milardalen U.), Melody Shih (NVidia), Joakim Andén (KTH), Libin Lut,
Robert Blackwell (SCC), Andrea Malleo (Bloomberg), and many others. ..

FWAM5 Friday, October 20, 2023

LCenter for Computational Mathematics, Flatiron Institute

What is this non-uniform fast Fourier transform? (NUFFT)

% 3
3 44 e e PO
«SITW-JN C t}yl,i f b
[0 7" x‘s . {! »* e ! » S rl !’_J’ e |
1D case, “type 1" transform: A k] ;_,r ,J’JVZ Teizaz7k
~T o
M=6 N=10
O,zr—yufn(h wferm

What is this non-uniform fast Fourier transform? (NUFFT)

c e

shreegtt 57 ,(I T] g vti f'/qf
3 /\g
1D case, “type 1" transform: x] lxgm,{ kSl D:*_t Teizaz7k

-~

M=6 N=10
—
Qy- ptn‘n(h. mferva(

Given locations xi,...,xy, and their “strengths” ci,..., cp, return

_ M ikx; N N N
fk_zjzle’xfcj, fork_—z,—5+1,...,5—2,7—1

e Has N outputs, each a sum of M terms: naively O(NM) cost (flops)
e Off-grid version of fast Fourier transform (FFT) there M = N and x; = 27j/N

What is this non-uniform fast Fourier transform? (NUFFT)

c 2
% 44 £, T
sheegft ¢ ?\L T tyred I { JRLAE

]‘(x . - | 1
1D case, “type 1" transform: —f— xfrixhzx: R & =2

- S4a3z 1@

M=6 N=10
—
Qy- ptn‘n(h. mferva(

Given locations xi,...,xy, and their “strengths” ci,..., cp, return

— M ikx; _ N N N N
fk—zj:].elecj', fOfk——77—5+1,...,7—2,7—1

Has N outputs, each a sum of M terms: naively O(NM) cost (flops)

Off-grid version of fast Fourier transform (FFT) there M = N and x; = 27j/N
NUFFT does this fast in O(M + Nlog N) nearly linear cost
approximates it to a user-requested € & =10""! (fastest) to e = 10 !* (slowest)

What is this non-uniform fast Fourier transform? (NUFFT)

c

shengt C,?]xs {h] o ﬂi Dt(l“f'l

1D case, utype 11’ transform L X‘IJ l)%fz)(«f{r 54 37
M=6 N=10
Q- peniedic mberml
Given locations xi,...,xy, and their “strengths” ci,..., cp, return
_ M ikx - N N N
fk_zjzle icj, fork_—z,—5+1,...,7—2,7—1

Has N outputs, each a sum of M terms: naively O(NM) cost (flops)

Off-grid version of fast Fourier transform (FFT) there M = N and x; = 27j/N
NUFFT does this fast in O(M + Nlog N) nearly linear cost
approximates it to a user-requested € & =101 (fastest) to £ = 10~ * (slowest)

“Type 2" is its adjoint (but not inverse!) g = >, fre 9 U — NU
e evaluates a given Fourier series at arbitrary targets {x;}, fast

What is this non-uniform fast Fourier transform? (NUFFT)

2& r
, A
sttt ¢ ?] | [(@,d "{ fig..
i ” s | T Xs * > jj:(J f e =N
1D case, “type 1" transform: +K’J] Saobhe LTk
-)
S M=6 N=10
Q- peniedic mberml
Given locations xi,...,xy, and their “strengths” ci,..., cp, return
N N P N N N
fk_zjzle icj, fork_—z,—5+1,...,7—2,7—1

Has N outputs, each a sum of M terms: naively O(NM) cost (flops)

Off-grid version of fast Fourier transform (FFT) there M = N and x; = 27j/N
NUFFT does this fast in O(M + Nlog N) nearly linear cost
approximates it to a user-requested € & =101 (fastest) to £ = 10~ * (slowest)

“Type 2" is its adjoint (but not inverse!) g = >, fre 9 U — NU
e evaluates a given Fourier series at arbitrary targets {x;}, fast

“Type 3" as type 1 but arbitrary target freqs. {sk}r_,: fx = Zjﬂil e’ ¢

NU — NU
s

Higher dimensions also needed

2D type 1: fr = Zjl\il e"(kxf'HyJ')CJ- for k, ¢ in a rectangle of modes
AN
n b .7 THHHA y
| mwd I
el lEszzz=ansl
2 N -] IS il g
- TEEmemer AT L
nonan’ frren (”l/\)pf-? regudar WAA(O)

3D type 1: fk,f,m = Z_jl\il ei(ka-i-Zyj-i-ij)Cj
etc

e dimensions {1,2,3} x types {1,2,3} = 9 transforms
Software design: how to avoid code repetition?

e O transforms x {float,double} = 18 functions
How reduce number of functions to write and maintain?

[®] FLATIRON

INSTITUTE

Who uses such transforms?

1) Fourier image reconstruction: fi ¢ is unknown pixel intensities
apparatus measures strengths ¢; at nonuniform frequency points (x;, y;)

MRI (either 2D slice, or 3D)

coherent diffraction/powder imaging (X-ray)
very long baseline interferometry (VLBI)
cryo electron microscopy

some 2D MRI points

[®] FLATIRON

NSTITUTE

Who uses such transforms?

1) Fourier image reconstruction: fi ¢ is unknown pixel intensities
apparatus measures strengths ¢; at nonuniform frequency points (x;, y;)

MRI (either 2D slice, or 3D)

coherent diffraction/powder imaging (X-ray)
very long baseline interferometry (VLBI)
cryo electron microscopy

some 2D MRI points

2) Numerical forward solvers, simulation
e electrostatics or fluid problems in periodic box
spectral Ewald method: Poisson solve trivial in Fourier space
e numerical PDE eg, interpolating between overlapping grids
e eval Fourier transform by numerical quadrature (type 1)
e Fresnel diffraction (optics)

[®] FLATIRON

NSTITUTE

1) Fourier image reconstruction: f ¢ is unknown pixel intensities
apparatus measures strengths ¢; at nonuniform frequency points (x;, y;)

MRI (either 2D slice, or 3D)

coherent diffraction/powder imaging (X-ray)
very long baseline interferometry (VLBI)
cryo electron microscopy

some 2D MRI points

2) Numerical forward solvers, simulation
e electrostatics or fluid problems in periodic box
spectral Ewald method: Poisson solve trivial in Fourier space
e numerical PDE eg, interpolating between overlapping grids
e eval Fourier transform by numerical quadrature (type 1)
e Fresnel diffraction (optics)

3) Spatial /temporal statistics
e power-spectrum of NU time-series, or point-masses galaxies
e fast kernel apply in Gaussian process regression []F!-ATIBQ"!

Probably the most famous astro image of 2019: 10~ radian resolution!

e UV Coverage
‘ ()g,y)
] T
B’ ﬁ =N
3 >
g4 \-(:)
=, [
=
Telescope Locations
s w - i
U {wavelengths) €20

uniform image grid fi ¢ predicted signals {g;} at NU pts

Probably the most famous astro image of 2019: 10~ radian resolution!

UV Coverage

‘ ()g,y)
7 =
N ¢ -5y
£ \5: =]
;7‘ S
=
) Telescope Locations
. o
U {Wavelengths) =10
uniform image grid fi ¢ predicted signals {g;} at NU pts

e our library (FINUFFT) used by SMILI code for this image (K. Akiyama, '19)

Probably the most famous astro image of 2019: 10~ radian resolution!

UV Coverage

‘ ()g,y)
T TN
N ¢ -5y
£, \5: =]
;7‘ S
) Telescope Locations
. o
U {Wavelengths) =10
uniform image grid fi ¢ predicted signals {g;} at NU pts

e our library (FINUFFT) used by SMILI code for this image (K. Akiyama, '19)

How? the above is a linear forward model: g = Af big dense matrix A

Probably the most famous astro image of 2019:

uniform image grid fy ¢

V (Wavelengths)

UV Coverage

O).

m

Ex}] o5
U {Wavelengths)

1o

predicted signals {g;} at NU pts

10710 radian resolution!

Telescope Locations

e our library (FINUFFT) used by SMILI code for this image (K. Akiyama, '19)

How? the above is a linear forward model:

Iterative optimization of F until it best fits the detected signal:

frecon = argminf HAf - gdetectedH% +)\].Hle + >\TVHf”TV

g = Af

e each iteration, A and A* applied fast by NUFFTs
e same idea in other 2D or 3D Fourier imaging (MRI, cryo-EM, etc)

big dense matrix A

dominant cost, | think

The most common NUFFT algorithm—and ours
(Dutt—Rokhlin '93, Steidl '98, Greengard—Lee '04, Potts et al, ...)

Eg, 1D Type 1: set up new grid on [0,27) with n = 2N points, say

The most common NUFFT algorithm—and ours
(Dutt—Rokhlin '93, Steidl '98, Greengard—Lee '04, Potts et al, ...)
Eg, 1D Type 1: set up new grid on [0,27) with n = 2N points, say

Design a kernel ¢(X) fun math: small width (w grid-points) YET e-small Fourier tails

The most common NUFFT algorithm—and ours

(Dutt-Rokhlin '93, Steidl '98, Greengard—Lee '04, Potts et al, ...)
Eg, 1D Type 1: set up new grid on [0,27) with n = 2N points, say
Design a kernel 1)(x) fun math: small width (w grid-points) YET e-small Fourier tails
1) Spread each spike ¢; onto grid by = Z}il ¢j(Lh — X;j) detail: 27-periodize

[— e

upsampled grid spacing kemel half-width
h=2n/n b wh/2 O(w?M) flops

O(wdM) kernel evals

‘01 often dominates cost
|

The most common NUFFT algorithm—and ours

(Dutt—Rokhlin '03, Steidl ‘98, Greengard—Lee '04, Potts et al, ...)
Eg, 1D Type 1: set up new grid on [0,27) with n = 2N points, say
Design a kernel 1)(x) fun math: small width (w grid-points) YET e-small Fourier tails
1) Spread each spike ¢; onto grid by = Z}il ¢j(Lh — X;j) detail: 27-periodize

I ey

upsamplsd grid spacing kenel half-width
=2n/n by wh/2 O(w?M) flops
R O(wdM) kernel evals
/\ j’\ /‘\ often dominates cost
1
1 . 3 - .
T

X1—21t

2) Let {by} = size-n FFT of {b,}

The most common NUFFT algorithm—and ours

(Dutt—Rokhlin '03, Steidl ‘98, Greengard—Lee '04, Potts et al, ...)
Eg, 1D Type 1: set up new grid on [0,27) with n = 2N points, say
Design a kernel 1)(x) fun math: small width (w grid-points) YET e-small Fourier tails
1) Spread each spike ¢; onto grid by = Zj‘il ¢j(Lh — X;j) detail: 27-periodize

I ey

upsamplsd grid spacing kenel half-width
=2n/n by wh/2 O(w?M) flops
R O(wdM) kernel evals
/N j’\ /‘\ often dominates cost
1
1 . 3 - .
T

x1—21t

2) Let {by} = size-n FFT of {b,}

3) Correct for spreading: i = keep only low modes —N/2 < k < N/2

¢(k)

The most common NUFFT algorithm—and ours

(Dutt-Rokhlin '93, Steidl '98, Greengard-Lee '04, Potts et al, ...)
Eg, 1D Type 1: set up new grid on [0,27) with n = 2N points, say
Design a kernel 1)(x) fun math: small width (w grid-points) YET e-small Fourier tails

1) Spread each spike ¢; onto grid by = Zj‘il ¢j(Lh — X;j) detail: 27-periodize

I C]\D(x—x])
upsampled grid spacing kemel half-width \\ J
=2n/n bu whi/2 O(w?M) flops
/A\ O(wdM) kernel evals
E j\ /‘K often dominates cost
: IR
x1—21t
- n

2) Let {by} = size-n FFT ofN{b,}

3) Correct for spreading: f; = keep only low modes —N/2 < k < N/2

L p
TRy Pk
e Type 2 reverses the steps; Type 3 is “Type 2 wrapped inside a Type 1"

Story of our code: FINUFFT

Prehistory (2015): Leslie Greengard, Jeremy Magland, JINUFFT
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)
had: NYU single-threaded Fortran, Gaussian kernel ¢(x) too wide (Greengard—Lee '09)
also: NFFT3 C++, multithreaded, hard to use, user chooses ¥(x) (Keiner et al '06)
Wanted faster multithreaded code, easy-to-use from many languages

[®] FLATIRON

NSTITUTE

Story of our code: FINUFFT

Prehistory (2015): Leslie Greengard, Jeremy Magland, JINUFFT
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)
had: NYU single-threaded Fortran, Gaussian kernel ¢(x) too wide (Greengard—Lee '09)
also: NFFT3 C++, multithreaded, hard to use, user chooses ¥(x) (Keiner et al '06)
Wanted faster multithreaded code, easy-to-use from many languages

2015: Jeremy: a C++ multithreaded spreader, nufft_comparison

[®] FLATIRON

NSTITUTE

Story of our code: FINUFFT

Prehistory (2015): Leslie Greengard, Jeremy Magland, JiNUFFT
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)
had: NYU single-threaded Fortran, Gaussian kernel ¢(x) too wide (Greengard—Lee '09)
also: NFFT3 C++, multithreaded, hard to use, user chooses ¥(x) (Keiner et al '06)
Wanted faster multithreaded code, easy-to-use from many languages

2015: Jeremy: a C++ multithreaded spreader, nufft_comparison
[2016: Flatiron Institute founded]

[®] FLATIRON

NSTITUTE

Story of our code: FINUFFT

Prehistory (2015): Leslie Greengard, Jeremy Magland, JiNUFFT
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)
had: NYU single-threaded Fortran, Gaussian kernel ¢(x) too wide (Greengard—Lee '09)
also: NFFT3 C++, multithreaded, hard to use, user chooses ¥(x) (Keiner et al '06)
Wanted faster multithreaded code, easy-to-use from many languages

2015: Jeremy: a C++ multithreaded spreader, nufft_comparison
[2016: Flatiron Institute founded]

2017: | got excited, wrote FINUFFT building on J's ideas/code. Me: C/Fort/Matlab
| write C++ like "C plus pass-by-reference”, simple, no STL, no classes, no namespacing. . .

Fix nearly-optimal 1(x) = e#V1=%* think it's faster to eval. than others (I was wrong)

[®] FLATIRON

NSTITUTE

Story of our code: FINUFFT

Prehistory (2015): Leslie Greengard, Jeremy Magland, JiNUFFT
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)
had: NYU single-threaded Fortran, Gaussian kernel ¢(x) too wide (Greengard—Lee '09)
also: NFFT3 C++, multithreaded, hard to use, user chooses ¥(x) (Keiner et al '06)
Wanted faster multithreaded code, easy-to-use from many languages

2015: Jeremy: a C++ multithreaded spreader, nufft_comparison
[2016: Flatiron Institute founded]

2017: | got excited, wrote FINUFFT building on J's ideas/code. Me: C/Fort/Matlab
I write C++ like “C plus pass-by-reference”, simple, no STL, no classes, no namespacing. ..

Fix nearly-optimal 1(x) = e#V1=%* think it's faster to eval. than others (I was wrong)

2017-2020: Fortran, MATLAB/Octave, Python, Julia wrappers; GPU code

[®] FLATIRON

NSTITUTE

Story of our code: FINUFFT

Prehistory (2015): Leslie Greengard, Jeremy Magland, JiNUFFT
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)
had: NYU single-threaded Fortran, Gaussian kernel ¢(x) too wide (Greengard—Lee '09)
also: NFFT3 C++, multithreaded, hard to use, user chooses ¥(x) (Keiner et al '06)
Wanted faster multithreaded code, easy-to-use from many languages

2015: Jeremy: a C++ multithreaded spreader, nufft_comparison
[2016: Flatiron Institute founded]

2017: | got excited, wrote FINUFFT building on J's ideas/code. Me: C/Fort/Matlab
I write C++ like “C plus pass-by-reference”, simple, no STL, no classes, no namespacing. ..

Fix nearly-optimal 1(x) = e#V1=%* think it's faster to eval. than others (I was wrong)
2017-2020: Fortran, MATLAB/Octave, Python, Julia wrappers; GPU code

now: 212 GitHub stars, dozens of known users national labs, on 6000 GPUs, etc

[®] FLATIRON

NSTITUTE

Story of our code: FINUFFT

Prehistory (2015): Leslie Greengard, Jeremy Magland, JiNUFFT
Marina Spivak, myself, at SCDA NUFFT needed for imaging (cryo-EM, etc)
had: NYU single-threaded Fortran, Gaussian kernel ¢(x) too wide (Greengard—Lee '09)
also: NFFT3 C++, multithreaded, hard to use, user chooses ¥(x) (Keiner et al '06)
Wanted faster multithreaded code, easy-to-use from many languages

2015: Jeremy: a C++ multithreaded spreader, nufft_comparison
[2016: Flatiron Institute founded]

2017: | got excited, wrote FINUFFT building on J's ideas/code. Me: C/Fort/Matlab
I write C++ like “C plus pass-by-reference”, simple, no STL, no classes, no namespacing. ..

Fix nearly-optimal 1(x) = e#V1=%* think it's faster to eval. than others (I was wrong)
2017-2020: Fortran, MATLAB/Octave, Python, Julia wrappers; GPU code
now: 212 GitHub stars, dozens of known users national labs, on 6000 GPUs, etc
Lesson: keep a CHANGELOG in your repo commit messages not enough ©
“Small” (lib = 3k lines of C++) Dive into some aspects. . . [.] fLATIRON

NSTITUTE

Performance: kernel ¢(x) evaluation

Problem: for some chips & compilers, exp(x) slow (40 M evals/sec/core)
Fix: piecewise polynomial approx + Horner's rule C gen. by MATLAB!

[@] FLATIRON

INSTITUTE

Performance: kernel ¥ (x) evaluation

Problem: for some chips & compilers, exp(x) slow (40 M evals/sec/core)

. . . . ’
Fix: piecewise polynomial approx + Horner's rule C gen. by MATLAB!
l/ Code generated by gen_all_horner_C_code.n in finufft/devel
// Authors: Alex Barnett & Ludvig af Klinteberg. H
// (€) The Simons Foundation, Inc.
i (w==
FLT = {4.5147043243215315E401, 4.5147043243215300E+01, © }:
FLT {5.7408070938221300E+01, -5.7408070938221293E+01, ©. };
FLT {-1.8395117921 , -1.83951179 0. };
FLT - [-2.03824262531820826+01, 2.0382426253182086E+01, 0. }:
FLT {-2.6940804433577426E400, -2.0940804433577389E+60, 0. }:
for <45 1#4) ker[1] = c0[1] + z*(c1[1] + z=(c2[1] + 2*(c3[1] + z'(c4[1])))),
} else i)
FLT {1.5653991189315119E+02, 8.8006872410780295E+02, 1.5653991189967152E+02, 0.000000000000D0C0E+00};
FLT {3.1653018869611077E+02, 7.4325702843759617E-14, -3.1653018868907071E+02, 0.0000000000000000E+00) ;
FLT {1.7742692790454484E+02, -3.3149255274727801E+02, 1,7742692791117119E+02, ©.0000800000000B00E+00) ;
FLT {-1.5357716116473156E+01, 9.5071486252033243E-15, 1.5357716122720193E+01, 0.0000000000000000E+00) ;
FLT {-3.7757583061523668E+01, 5.32229709688673156+01, -3.7757583054647384E+01, 0.0000000000000000E+00) ;
FLT {-3.9654011076088804E+00, 1.8062124448285358E-13, 3.96540111392 3
for 120; i<d; i++) ker[i] = cO[1] + 2¢(c1[i] + z*(c2[1] + z*(c3[i] + z*(ca[i] + z*(c5[i1)))));
} else if)
FLT {5.4284366850213200E402, 1.0073871433088398E+04, 1.0073871433088396E+04, 5.4284366850213223E+02};
FLT {1.4650917259256939E+03, 6.1905285583602863E+03, -6.1905285583602881E+03, -1.4650917259256937E+03) ;
FLT c2[] = {1.4186910680718345E403, -1.3995339862725591E+03, -1.3995339862725598E+03, 1.4186910680718347E+03};
FLT c3] {5.1133995502497419E+02, -1.4191688683682996E+03, 1,4191608683682998E+03, -5.1133995502497424E+02) 3
FLT cd {-4.8293622641174039E+01, 3.9393732546135226E+01, 3.9393732546135816E+01, -4.8293622641174061E+01);
FLT c5| {-7.8386867802392288E+01, 1.4918904800408930E+02, -1.4918904800408751E+02, 7.8386867802392359E+01);
FLT cgl {-1.0039212571700894E+01, 5.0626747735616746E+00, 5.06267477356255126+00, -1.0039212571700640E+01) ;
for (int i=0; i<d; i++) ker[i] = cB[i] + z*(ci[i] + z*(c2[i] + z*(c3[i] + z*(ca[i] + z*(cS[i] + z*(c6[1]))))));
} else if (w==5)
FLT cO[] = {9.9223677575398392E402, 3. 7794597555513320[.31 9.8715771010760494E+04, 3.7794697666613283E+04, 9.92232
9677575398403E+02, 0. .)3
-:--- ker_horner_allw_loop.c Top L1 GU; -master (C/*1 WS AhbrEVJ |

GCC/ICC compilers SIMD-vectorize this; get 400-700 M evals/sec/core
think hard re SIMD, but avoid maintaining intrinsics immintrin.h
are exploring custom AVX512 (Wenda Zhou + R. Blackwell) Ol FLATIRON

NSTITUTE

Performance: spreading

The order in which NU points spread to grid has big effect on speed!

e bin-sort NU pts (into 16 x 4 x 4 cuboids of grid)

e process all pts in bin 1, then bin 2, ... good for keeping grid in cache(J. Magland)
e multithreaded the bin-sort (2023: M. Reinecke speeds it up!)

The order in which NU points spread to grid has big effect on speed!

e bin-sort NU pts (into 16 x 4 x 4 cuboids of grid)

® process all pts in bin 1, then bin 2, ... good for keeping grid in cache(J. Magland)
e multithreaded the bin-sort (2023: M. Reinecke speeds it up!)

Load-balanced multithreading (also collab with J. Magland)
Type-2 €asy: Openl\/IP parallel over NU pts no collisons reading from U blocks
Type-1 not so: writes collide! load-balance via “subproblems” each of 10* NU pts

2D case, type—1, spread to fine grid:

W]E*m

Interface—how it evolved

2017: | wanted simple, familiar to users in C/Fortran and match NYU code
C-compatible: pass pointers, explicit array sizes, return value is error code. . .

int M = 1e8; // number of nonuniform points

vector<double> x(M); // NU pts

vector<complex<double> > c(M); // NU strengths

// (here user fills x and c as they like)

int N = 1e7; // number of output modes

vector<complex<double> > f(N); // allocate output array

int status = finuffti1di(M, &x[0], &c[0], +1, 1e-9, N, &f[0], NULL); // do it

[®] FLATIRON

NSTITUTE

Interface—how it evolved

2017: | wanted simple, familiar to users in C/Fortran and match NYU code
C-compatible: pass pointers, explicit array sizes, return value is error code. ..

int M = 1e8; // number of nonuniform points

vector<double> x(M); // NU pts

vector<complex<double> > c(M); // NU strengths

// (here user fills x and c as they like)

int N = 1e7; // number of output modes

vector<complex<double> > f(N); // allocate output array

int status = finuffti1di(M, &x[0], &c[0], +1, 1e-9, N, &f[0], NULL); // do it

e Why last arg NULL? it accepts ptr to options C-struct eg, opts.debug=2

[®] FLATIRON

NSTITUTE

Interface—how it evolved

2017: | wanted simple, familiar to users in C/Fortran and match NYU code
C-compatible: pass pointers, explicit array sizes, return value is error code. ..

int M = 1e8; // number of nonuniform points

vector<double> x(M); // NU pts

vector<complex<double> > c(M); // NU strengths

// (here user fills x and c as they like)

int N = 1e7; // number of output modes

vector<complex<double> > f(N); // allocate output array

int status = finuffti1di(M, &x[0], &c[0], +1, 1e-9, N, &f[0], NULL); // do it
e Why last arg NULL? it accepts ptr to options C-struct eg, opts.debug=2

2018: Batch transforms sharing NU pts: finufftidimany (ntrans, M, ...)
batch FFTW often faster, sorting only done once

[®] FLATIRON

NSTITUTE

Interface—how it evolved

2017: | wanted simple, familiar to users in C/Fortran and match NYU code
C-compatible: pass pointers, explicit array sizes, return value is error code. . .

int M = 1e8; // number of nonuniform points

vector<double> x(M); // NU pts

vector<complex<double> > c(M); // NU strengths

// (here user fills x and c as they like)

int N = 1e7; // number of output modes

vector<complex<double> > f(N); // allocate output array

int status = finuffti1di(M, &x[0], &c[0], +1, 1e-9, N, &f[0], NULL); // do it
e Why last arg NULL? it accepts ptr to options C-struct eg, opts.debug=2

2018: Batch transforms sharing NU pts: finufftidimany (ntrans, M, ...)
batch FFTW often faster, sorting only done once

2020: maintaining 18 x 2 functions too much pain — “guru” interface
4-function pattern: Create plan, Set the NU pts, Execute transform(s), Destroy plan.

finufft_plan: “opaque’ pointer to (private) C++ struct. (as in Brian's talk)

[®] FLATIRON

NSTITUTE

Interface—how it evolved

2017: | wanted simple, familiar to users in C/Fortran and match NYU code
C-compatible: pass pointers, explicit array sizes, return value is error code. ..

int M = 1e8; // number of nonuniform points

vector<double> x(M); // NU pts

vector<complex<double> > c(M); // NU strengths

// (here user fills x and c as they like)

int N = 1e7; // number of output modes

vector<complex<double> > f(N); // allocate output array

int status = finuffti1di(M, &x[0], &c[0], +1, 1e-9, N, &f[0], NULL); // do it
e Why last arg NULL? it accepts ptr to options C-struct eg, opts.debug=2

2018: Batch transforms sharing NU pts: finufftidimany (ntrans, M, ...)
batch FFTW often faster, sorting only done once

2020: maintaining 18 x 2 functions too much pain — “guru” interface
4-function pattern: Create plan, Set the NU pts, Execute transform(s), Destroy plan.
finufft_plan: “opaque’ pointer to (private) C++ struct. (as in Brian's talk)

Lesson: learn about public vs private headers, namespacing (as | had to)

Lesson: think hard about interface, break it VERY rarely!

help users: preserve all simple and batch interfaces (they call guru)
D

[®] FLATIRON

NSTITUTE

Wrappers to other languages: expands user base

Guru interface made wrapping easier: just wrap 4 funcs, pass opaque ptr

write the simple and batched functions via a few lines in each high-level language

MATLAB/Octave (Libin Lu)
simple for users £ = finufftidi(x,c,+1,1e-9,N);
e still recommend MWrap to auto-gen MEX code horror (Bindel '09)
[@] FLATIRON

Guru interface made wrapping easier: just wrap 4 funcs, pass opaque ptr

write the simple and batched functions via a few lines in each high-level language

MATLAB/Octave (Libin Lu)
simple for users f = finufftidi(x,c,+1,1e-9,N);
e still recommend MWrap to auto-gen MEX code horror (Bindel '09)
Python

2018: Dan Foreman-Mackey wrote a pybind11 wrapper to FINUFFT
e served well for a while. But eg forced recompile of 1ibfinufft.so

2020: Joakim Andén switched us to ctypes nice, 1000 lines incl. auto-doc-gen

Others have wrapped (cu)FINUFFT in autodiff frameworks:
tensorflow—nufft, jax—finufft, pytorch-finufft

[®] FLATIRON

INSTITUTE

Guru interface made wrapping easier: just wrap 4 funcs, pass opaque ptr

write the simple and batched functions via a few lines in each high-level language

MATLAB/Octave (Libin Lu)
simple for users f = finufftidi(x,c,+1,1e-9,N);
e still recommend MWrap to auto-gen MEX code horror (Bindel '09)
Python

2018: Dan Foreman-Mackey wrote a pybind11 wrapper to FINUFFT
e served well for a while. But eg forced recompile of 1ibfinufft.so

2020: Joakim Andén switched us to ctypes nice, 1000 lines incl. auto-doc-gen
Others have wrapped (cu)FINUFFT in autodiff frameworks:
tensorflow—nufft, jax—finufft, pytorch-finufft

Julia wrapper is separate repo: helps separate concerns (L. af Klinteberg)

Lessons: each new language brings installation troubles linux/0SX/Windows

[®] FLATIRON

NSTITUTE

Testing
Need tests that check accuracy for all transforms fail if measured error > 10¢ ?

> make test [includes bunch of edge cases M=0, N=0, eps=0.0, etc...]
0 segfaults out of 8 tests done
0 fails out of 8 tests done

[@] FLATIRON

NSTITUTE

Testing
Need tests that check accuracy for all transforms fail if measured error > 10¢ ?

> make test [includes bunch of edge cases M=0, N=0, eps=0.0, etc...]
0 segfaults out of 8 tests done
0 fails out of 8 tests done

A story: | wrote finufftild_test, etc, writes to stdout for humans. ..

test 1d type 1:

1000000 NU pts to 1000000 modes in 0.0829 s 1.21e+07 NU pts/s
one mode: rel err in F[370000] is 6.59e-08

[...]

Such speed and accuracy testers are crucial for progress

[®] FLATIRON

NSTITUTE

Testing

Need tests that check accuracy for all transforms fail if measured error > 10¢ ?

> make test [includes bunch of edge cases M=0, N=0, eps=0.0, etc...]
0 segfaults out of 8 tests done
0 fails out of 8 tests done

A story: | wrote finufftild_test, etc, writes to stdout for humans. ..

test 1d type 1:

1000000 NU pts to 1000000 modes in 0.0829 s 1.21e+07 NU pts/s
one mode: rel err in F[370000] is 6.59e-08

[...]

Such speed and accuracy testers are crucial for progress
To make a pass-fail test, wrote bash to pipe stdout to numdiff (linux tool)
3 years later: OSX, Windows users cannot find numdiff, ugh!
thus: each C++ test driver now uses exit code 0 for success, 1 for fail

Lesson: remove all nonessential dependencies. Use exit code as test result.

[®] FLATIRON

NSTITUTE

Testing

Need tests that check accuracy for all transforms fail if measured error > 10¢ ?

> make test [includes bunch of edge cases M=0, N=0, eps=0.0, etc...]
0 segfaults out of 8 tests done
0 fails out of 8 tests done

A story: | wrote finufftild_test, etc, writes to stdout for humans. ..

test 1d type 1:

1000000 NU pts to 1000000 modes in 0.0829 s 1.21e+07 NU pts/s
one mode: rel err in F[370000] is 6.59e-08

[...]

Such speed and accuracy testers are crucial for progress
To make a pass-fail test, wrote bash to pipe stdout to numdiff (linux tool)
3 years later: OSX, Windows users cannot find numdiff, ugh!
thus: each C++ test driver now uses exit code 0 for success, 1 for fail

Lesson: remove all nonessential dependencies. Use exit code as test result.
Lesson: make tests (and examples) for each wrapped language

[®] FLATIRON

NSTITUTE

Testing
Need tests that check accuracy for all transforms fail if measured error > 10¢ ?

> make test [includes bunch of edge cases M=0, N=0, eps=0.0, etc...]
0 segfaults out of 8 tests done
0 fails out of 8 tests done

A story: | wrote finufftild_test, etc, writes to stdout for humans. ..

test 1d type 1:

1000000 NU pts to 1000000 modes in 0.0829 s 1.21e+07 NU pts/s
one mode: rel err in F[370000] is 6.59e-08

[...]

Such speed and accuracy testers are crucial for progress
To make a pass-fail test, wrote bash to pipe stdout to numdiff (linux tool)
3 years later: OSX, Windows users cannot find numdiff, ugh!
thus: each C++ test driver now uses exit code 0 for success, 1 for fail

Lesson: remove all nonessential dependencies. Use exit code as test result.
Lesson: make tests (and examples) for each wrapped language
Continuous Integration (Cl) each GitHub push reruns tests: [FIIErT]

Jenkins (was using makefile, now uses CMake) [®) FLATIRON

INSTITUTE

Documentation

README.md, or a .tex file to PDF, fine for small project, but:

» Flatiron Institute Nonuniform Fast Fourier Transform next

Flatiron Institute Nonuniform Fast Fourier
Transform

fiNUFFT

Table of Contents

fiNUFFT

FINUFFT is a library to compute efficiently the three most common types of nonuniform fast Fourier
transform (NUFFT) to a specified precision, in one, two, or three dimensions, either on a multi-core
shared-memory machine, or on a GPU. It is extremely fast (typically achieving 10° to 10° points per
second on a CPU, or up to 10° points per second on a GPU), has very simple interfaces to most major
numerical languages (C/C++, Fortran, MATLAB, octave, Python, and Julia), but also has more ad-
vanced (vectorized and “guru’) interfaces that allow multiple strength vectors and the reuse of FFT
plans. The CPU library is written in C++ (with limited use of ++ features), OpenMP, and calls FFTW. It
has been developed since 2017 at the Center for Computational Mathematics at the Flatiron Institute,
by Alex Barnett and others, and is released under an Apache v2 license.

What does FINUFFT do?

As an example, given M real numbers z; € [0, 2rr), and complex numbers c;, with j = 1,..., M,
and a requested integer number of modes N, FINUFFT can effcently computs the 1D “ype 1 rans-
form, which means to evaluate the IV complex outputs

Bl)
fe= e, for k€Z, —-N/2<k<N/2-1.

This Page

" h As with other *fast" algorithms, FINUFFT does not evaluate this sum directly—which would take
Gzt saine O(NM) effort—but rather uses a sequence of steps (in this case, optimally chosen spreading, FFT,
and deconvolution) to approximate the vector of answers (1) to within the user’s desired relative toler-
ance, with only O(N log N + M) effort, e, in almost linear time. Thus the speed-up is similar to that
of the FFT. You may now want to jump to quickstart, or see the definitions of the other transforms in
general dimension.

One interpretation of (1) i: the retuned values . are the Fourier seres coeffcents of [N
distribution f(x) := Y_j_; ¢j0(x — x;), a sum of point-masses with arbitrary locations z; and

strengths c;. Such exponential sums are needed in many applications in science and engineering, in-__~|

Web-facing
essential for
professionalism

math definitions
installation
examples
tutorial cases
troubleshooting
devnotes

[®] FLATIRON

STITUT

Documentation: lessons

e Decent solution | recommend: sphinx, host at readthedocs.io
docs/#*.rst ReStructuredText, in master branch (unlike GHpages)

IATEX math pretty good via mathjax, texext

[@] FLATIRON

INSTITUTE

Documentation: lessons

e Decent solution | recommend: sphinx, host at readthedocs.io
docs/#*.rst ReStructuredText, in master branch (unlike GHpages)

IATEX math pretty good via mathjax, texext

e SSOT: avoid repetition, makes maintenance/changes easier

Eg: C++ source has no doc, refers user to docs/ (ie web)

But don't get carried away with obscure doc build automation
eg: my bash script auto-generates C/C++ docs, now hard to understand

[®] FLATIRON

NSTITUTE

Documentation: lessons

e Decent solution | recommend: sphinx, host at readthedocs.io
docs/#*.rst ReStructuredText, in master branch (unlike GHpages)
IATEX math pretty good via mathjax, texext

e SSOT: avoid repetition, makes maintenance/changes easier

Eg: C++ source has no doc, refers user to docs/ (ie web)

But don't get carried away with obscure doc build automation
eg: my bash script auto-generates C/C++ docs, now hard to understand

e Describe what your tool does in plain mathematical language
Don't assume jargon from one science area (“wavefunction”, “k-space” etc)
Most MRI NUFFT codes fail to do this = unusable

[®] FLATIRON

NSTITUTE

Documentation: lessons

e Decent solution | recommend: sphinx, host at readthedocs.io
docs/*.rst ReStructuredText, in master branch (unlike GHpages)

IATEX math pretty good via mathjax, texext

e SSOT: avoid repetition, makes maintenance/changes easier

Eg: C++ source has no doc, refers user to docs/ (ie web)

But don't get carried away with obscure doc build automation

eg: my bash script auto-generates C/C++ docs, now hard to understand

e Describe what your tool does in plain mathematical language
Don't assume jargon from one science area (“wavefunction”, "k-space” etc)

Most MRI NUFFT codes fail to do this = unusable

e Always update docs at the time you change the source

[®] FLATIRON

NSTITUTE

GPU version
cuFINUFFT: CUDA called from C+4 (Melody Shih, intern '18, '19 [NYU—NVidia])

Single-precision VY100 GPU comparisons (including HZD & precomp, smaller is better):
2D Type 1, N; = 1000, M = 107 3D Type 1, N; = 100, M = 107
12 prr—T T 10°F T T T]

§ SPUNUFET
[. 10°

FINUFFT (28 threads
10 xeon Broadwell)

gpPUNUFFT

ns per nonuniform point

100 T
- :;uFIﬂ_U FET *._,_,__;;gf\I_IV'iU FFT
| .

| | | | | | | | | |
0-° 1wt 1% 1w? 107! 10 10" 10% 102 107!
¢ (relative [2 error) ¢ (relative [y error)

e spreading done in shared memory (subproblems), not global memory
(Shih et al, PDSEC 2021, best paper prize)

2023: cleaned up GPU lib (+tests,...) into FINUFFT repo (R. Blackwell)

Future: language interfaces auto-detect GPU arrays? [.] .FNLATIBPTNE

Conclusions: developing a small(ish) library

First identify a need + benchmark existing codes, on same task!
— can you perform task faster / more accurate?

[@] FLATIRON

INSTITUTE

Conclusions: developing a small(ish) library

First identify a need + benchmark existing codes, on same task!
— can you perform task faster / more accurate?

Start small, but professionalizing a library involves learning!

— users find bugs you'd never thought of must respond (thanks Libin)
— users make improvement PRs, or beat your speed respond to some
— be conservative: one change at a time for your sanity (eg: no MPI)

— try to be somewhat idiomatic | won't use #define FLT double in C++ again ©

[®] FLATIRON

NSTITUTE

Conclusions: developing a small(ish) library

First identify a need + benchmark existing codes, on same task!
— can you perform task faster / more accurate?

Start small, but professionalizing a library involves learning!

— users find bugs you'd never thought of must respond (thanks Libin)
— users make improvement PRs, or beat your speed respond to some
— be conservative: one change at a time for your sanity (eg: no MPI)

— try to be somewhat idiomatic | won't use #define FLT double in C++ again ©

Collect a great team: software engineers + interns + motivated users
— library becomes used ® = more Issues / requests ®
- quarterly(?) all-team meeting prioritize features, drop others

[®] FLATIRON

NSTITUTE

First identify a need + benchmark existing codes, on same task!
— can you perform task faster / more accurate?

Start small, but professionalizing a library involves learning!

— users find bugs you'd never thought of must respond (thanks Libin)
— users make improvement PRs, or beat your speed respond to some
— be conservative: one change at a time for your sanity (eg: no MPI)

— try to be somewhat idiomatic | won't use #define FLT double in C++ again ©

Collect a great team: software engineers + interns + motivated users
— library becomes used ® = more Issues / requests ®
- quarterly(?) all-team meeting prioritize features, drop others

Installation, dependencies & language wrappers takes much of our time!
— helps users, but needs a team (linux,0SX,Windows). Your choice.
Eg: guess which language wrapper SMILI black hole astro code uses?

— still plenty of fun with math & floating-point speed hacking!
Thank-you! [®] FLATIRON

INSTITUTE

